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Three-dimensional holographic vector of atomic interaction field (3D-HoVAIF) was used to describe the
chemical structures of 37 anti-Tuberculosis drug. Here quantitative structure activity relationship (QSAR)
models were built by partial least square regression (PLS) and multiple linear regression (MLR). The estimation
stability and generalization ability of the model was strictly analyzed by both internal and external validations.
The correlation coefficient (R2) of established MLR and PLS models, Leave-One-Out (LOO) Cross-Validation
(CV), prediction values versus experimental ones of external samples were R2=0.939, QLOO

2=0.906,
Qext

2=0.879 (MLR) and R2=0.848, QLOO
2=0.805, Qext

2=0.892 (PLS), respectively. The results exhibited both
favorable estimation stability and good prediction capabilities. Thus, this developed 3D-HoVAIF could preferably
express information related to biological activity of arylamide derivatives.
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Tuberculosis (TB) is a disease mainly caused by the
infection of mycobacterium tuberculosis affecting
approximately ten million people around the world [1]. It
is a growing global health problem causing nearly three
million deaths with eight million new cases each year [2].
Although TB can be cured with the proper drugs for at least
six months, the emergence of multi- and extensively drug
resistant has created substantial new challenges for the
treatment of the disease [3, 4]. No new antibiotics against
TB have been developed in the past 30 years. Accordingly,
to address these problems the design of novel and more
potent anti-tubercular agents has to be regarded as highly
important.

Fortunately, the availability of computational techniques
on quantitative structure activity relationships (QSAR)
might provide a potential direction for accelerating the drug
design process. In fact, QSAR can be viewed as a technique
attempting to summarize chemical and biological
information in a form that allows one to generate
relationships between chemical structure and biological
activity [5, 6]. However, 3D-QSAR studies on the anti-TB
drug were still rare. Based on the previous works [5, 7]
which use this method to do other drugs, a 3D molecular
structural characterization method, the three-dimensional
holographic vector of atomic interaction field (3D-HoVAIF)
was proposed in our laboratory. 3D-HoVAIF method,
deriving from multi-dimensional vectors to represent
molecular steric structural characteristics, is independent
of experiments and does not require conformation
alignment, which is used to express drug structure and
activity of arylamide derivative analogues and generates a
good result.

Theoretical section
3D-HoVAIF was developed considering three common

non-bonding interactions of the biological activities, i.e.,
electrostatic interaction, steric interaction, and hydrophobic
interaction related with atomic relative distance and
atomic self-properties. These descriptors neither resort to

any experimental parameters nor consider configuration
overlap of samples. Ordinary atoms of organic molecules
including H, C, N, P, O, S, F, Cl, Br and I are classified into five
types in the Periodic Table of Elements. According to the
hybridization state of atoms, the atoms are furthermore
subdivided into ten types. Thus, there are 55 interatomic
interactions (Supporting table 1) in a molecule. In this paper,
electrostatic, steric and hydrophobic potential energies
take part in the representation of different interactions,
producing 3×55 = 165 interaction items for organic
compounds.

Electrostatic Interaction
Electrostatic interaction field is an important non-bonded

interaction, which is expressed by classical Coulomb
theorem:

   (1)

where rij is interatomic Euclid distance (nm), e the unit
electric charge of 1.6021892 . 10-19 C, ε0 the vacuum
dielectric constant being 8.85418782 . 10-12 C2/J·m, Z the
amounts of net electric charges; m and n are atomic types.
The entire electrostatic interaction items are calculated
by formula (1). Fifty-five electrostatic interaction items
were calculated according to their attribute.

Steric Interaction
Steric interaction describes interatomic spatial

nondipole-dipole or dipole-induced interactions, which is
described by Lennard-Jones formula:

(2)

where εij represent potential well [8, 9] (Supporting table
2), D is 0.01 [10], representing calibration constant of
interatomic interaction deduced by experience;
Rij

*=(Ch·Rii
*+ Ch·Rjj

*)/2 is van der waals radius with its
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calibration factor of 1.00 in the case of sp3 hybridization,
0.95 in the case of sp2 hybridization and 0.90 in the case of
sp hybridization [10].

Hydrophobic Interaction
Hydrophobic interaction is frequently important for drug

molecules. Indicating information on systematic entropic
changes, such an interaction is thus difficult to be uniformly
described. In 3D-HoVAIF, hydrophobic interaction force field
is defined as interatomic hydrophobic interaction in hint
method proposed by Kellogg [11-15].

   (3)

where S represents solvent accessible surface area of atom
(SASA), i.e., surface area formed by a hydrate probe
spherically rolling at surface of this atom [16] (Supporting
table 3); a is the hydrophobic constants [17] (Supporting
table 4); T the sign function, indicating entropy change
resulting from different types of atomic interactions [11-
16] (Supporting table 5).

Results and discussions
Structure and -logIC50 of 37 arylamide derivatives

The chemical structures of arylamide derivatives and
their biological data are given in table 1 according to [18].
IC50 is the drug concentration inhibiting 50% of the cellular
growth followed by 1 hour of drug exposure.

Table 1
CHEMICAL STRUCTURE AND BIOLOGICAL ACTIVITIES OF ARYLAMIDE DERIVATIVES
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Characterization of arylamide derivatives
Molecular steric structures of arylamide derivatives were

firstly autoconstructed by Chemoffice 8.0, and then
optimized at AM1 level by MOPAC half-experience

quantum chemistry software in Chem3D. Then net electric
charge of atoms was calculated in single-point form by
Mülliken methods. After the above two items were input
respectively into forms of Descartes coordinates and net
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electric charge amounts, 3D-HoVAIF descriptors were
produced by applying 3D-HoVAIF.EXE, an applied program
written in C language by our laboratory.

Model validation
An excellent QSAR model should have both favorable

estimation ability for any internal sample and outstanding
predictive ability for any external sample. The usual method
to prove a model to have internal predictive ability is leave-
one-out (LOO) cross-validated (CV) method. In the present
work, the statistical parameter correlation coefficient
(QLOO

2) [19] for internal validation criteria is used. Predictive
performance of the model can be assessed by the
prediction values of QLOO

2. Recently, several novel methods
for model validation have been developed, such as leave-
several-out (LSO) [20],Y-scrambling [21], self organizing
mapping of molecular objects [22], external validation
using division of a dataset into training and test sets [21,
23]. The external prediction power of QSAR can be
evaluated by Qext

2 [24, 25] as follows:

                                             (4)

In eq. 4, both yi and yi  are the observed and calculated
values of the test dataset, and yir is the mean value of
observed values of the training dataset.

In order to prove the validity and stability of the model,
the whole dataset is divided into two subsets (table 1),
thus some samples were treated as training set which
were utilized to construct QSAR model and the remaining
samples were regarded as test set in order to validate the
predictive power of the model.

MLR modeling
Multiple linear regression (MLR) is a classic modeling

technique. The descriptors are screened before being
submitted to MLR analysis. In order to assure their
statistical significance, only information-rich descriptors
pass the screening step onto regression analysis. The
forward stepwise multiple regression (SMR) method was
employed for variables screening before the descriptors
were submitted to MLR analysis. Statistical analysis was
performed using the SPSS statistical package, version 13.0.
Figure 1 indicated that the values of the correlation
coefficients, R2 and QLOO

2, increased gradually with the
increase in the number of the variables (n). In addition,
based on the past experience, one fine model shall comply
with the empirical rule that the ratio number of samples
(N)/number of variables (n) shall be larger than 5. The

dataset was divided into a training set (30 molecules, table
1) and a test set (7 molecules, table 1).Therefore MLR
analysis was used to construct the QSAR model by using
the 6 descriptors. In the model of SMR-MLR (a), the
molecules 10, 12, 15, 22, 30, 33 and 35 (in Table 1 marked
a) were chosen as the test set in reference [18]. The
relationship between all the structural descriptors and the
activity (-logIC50) of 30 components of the training set was
modeled as follow:

              

         

             (5)

where N represents the number of samples used for model
building, R is the multiple correlation coefficient, SD
represents the standard deviation, F is the Fisher statistic.
The subscript lowercase letters “LOO” and “ext” stand for
the statistical results for training set in leave-one-out cross-
validation and test set in the training procedure, respectively.

The relevant results are listed in table 2. According to
table 2, the SMR-MLR results were obviously superior to
the available reference reports, which indicate that the
modeling has obviously a greater effect.

Fig. 1. Results of SMR with R2 and QLOO
2of MLR (a).

Table 2
COMPARING OF MODEL RESULTS

BY DIFFERENT METHODS

We choose another test set which will include the
molecules 2, 5, 8, 12, 27, 31 and 34 (table 1 marked b).
These supplementary studies were included because
many properties calculated for QSAR purposes are critically
dependent upon conformation. The same method was
used to construct the QSAR model by using all the 6
descriptors. Table 2 lists the model of SMR-MLR (b) results.

^
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The good cross-validation value shows our model has good
modeling stabilities.

PLS Modeling
PLS regression is mainly used for modeling linear

regression between multi-dependent variables and multi-
independent variables. Here variables selection is
completed by stepwise multiple regression (SMR), which
is employed at a given critical value to orderly introduce in
terms of their importance and finally chosen out off
significant variables.

The ultimate vectors for 37 arylamide derivatives were
selected from 165 interaction items. SMR was
implemented by SPSS 13.0. The obtained original variable
matrix by SMR was then subject to a partial least square
(PLS) regression modeling and the optimal model was
determined when cross-validation correlative coefficients
(QLOO

2) in leave one out cross-validation (LOO-CV) achieved
the maximum value (fig. 2). PLS was performed using
Simca-12.0.

Table 2 lists reference reports and our SMR-PLS results
for the molecules in training set and the rests in predicting,
showing 3D-HoVAIF model greatly gains by comparison.
The cross-validated correlation coefficient and predictive
correlation coefficient were obviously superior to the
reference. This study shows that the 3D-HoVAIF model
has good modeling stabilities. These results indicate that
the 3D-HoVAIF model is acceptable from statistical point
of view. The score scatter of 30 samples at the top two
principal components (PCs) is presented in figure  3,
excluding the 8#, the others were in 95% confidence interval
of Hotelling T2 ellipse. The excellent results of this study

Fig. 2. Results of SMR with R2 and QLOO
2of PLS-(a)

Fig. 3. Score distributions of the top two principal components for
30 samples in training set (a)

Fig. 4. Loading contributions of original variables to the top two
principal components

Fig. 5. Plot for variable importance of projection

should be recognized. Figure 4 presents loading
contributions of 3 variables to the first two principal
components, and it was seen that electrostatic and
hydrophobic interactions have different contributions to
them. Hydrophobic interactions (V

12
) had prominent

contributions to PC1 loadings well correlative to Y variables,
and hydrophobic (V

121
, V

129
) had prominent contributions

to PC2. Besides, variable importance of projection (VIP)
index of original variables to -logIC50 is presented in figure
5. The fact that the most contributive top three items (V

121
,

V
129 

and V
27

) including hydrophobic and electrostatic
interactions indicated an intimate relationship between -
logIC50 for arylamide derivatives and the three classical
interactions, especially the electrostatic and hydrophobic
interactions. Therefore, it can be estimated that these
interaction items will produce more influence on -logIC50,
which brings a hopeful idea for designing new molecule
and predicting their activities.

Conclusions
In this paper, quantitative structure activity relationship

model was built to study the relationship between the
biological activities of arylamide derivatives and their
chemical structure by MLR and PLS methods. The models
including classic electrostatic, steric and hydrophobic
interactions have favorable stability and good predictive
ability, it illustrates that 3D-HoVAIF is an effective
description methodology for characterization of the
complex interactions of drug molecules. Furthermore, the
obtained model with obvious physicochemical meaning
and strong structural interpretation is independent of
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experimental data and configurationally overlapping
required by other popular 3D modeling methods, such as
comparative molecular field analysis (CoMFA). It was
suggested that 3D-HoVAIF behaves quite well in
representation of both molecular structures and biological
activities for arylamide derivatives. So 3D-HoVAIF is
promising to 3D-QSAR study and is expected to be widely
used in the bioactivity prediction of various therapeutical
drugs and other diverse substances.
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